U. S. DEPARTMENT OF AGRICULTURE
FOREST SERVICE

LAKE AND STREAM SURVEY
WHITMAN NATIONAL FOREST
BY
NORBERT L. SIEG

> TABLE OP COLTEMTE
Pacd
Improductron 1
Purpose of Survery $\ldots \ldots \ldots$ 1
Persomel 1
Time spent in the Eield 1
Bquipment 2
 2
Aomowledgments 2
mablated Lake surver Data 3
Physical Features 3
Chomion Analysis 7
Temperature of the Lakes 8
 9
Bottom Food Samples $-\ldots \ldots \ldots \ldots$ 18
Stookthg Program 29
stmany and pecomendartons 21
BACLE CRGBK SURURY 26
DASm MAGLE ORBEM SURVEX 31
Rerramices usm- 31
Tumber mate Page
I. Physical Paatures 45
 6
3. Chemical Answais of Hake Watero 7
Lu Themel stretimication 8
5. Ocourvence of Pich Pood Oryenisu in Stomachs of Pish
6. Stomach Anaiysta - Lookingskass Leme 10
7. Occurence of Pish Bood Orgentsms in Stonache of Rtsh From Eine Late and Reservolr 11
8. Stomach Analysis - Pine Lake and Rescrvotr 12
9. Gccurrence of Pish Food Greantims in Stomache of Tishfrom Hidden Lake13
10. Stomach Analysis - Hidden Lame 14
11. Ocouremac of pish Food Organisum in Btomacho of Finh from Beax Lale 15
E. Ocmurence of Fish Food Orgentms in Stomachs of pish Pron ORIver Lake 16
17 Occurgence of Pish Rood Organisms in Stonnchs of Itsh from Hegle Leke 17
1 Botton Food Samples 18
15. Stocking Program from Lakes 20
5. Square Foot Bottom Somyles a Regle Creek 28
17. Coompence of pish Pood Orgentsme th Stomachs of Fish Prom Bagle Creek 29
78. Stociring Program for Pagle Creek \quad. - 30

myroduction

Puppose of Suryey:
This is the second report of the conditions existing in the lakes and streems of the Whitmen National Porest. Region 6. The first survey, conducted in the summer of 1938 , and this survey, condroted in the sunmer of 1939, were under the supervision of the Whitman National Fonest.

The purpose of thio survey is:
(1) To detemine the need for lake and strem improvements on the Whitman Iational Forest.
(2) To develop a prection stooking program.
(3) To determine whether or not present fishine regulations are satisfactory and to xecommend such changes as seem auvisable.

Approximately one week was spent in makine a general survery of Baple and Bast Bacle Crecks. This was done while wattine for the lake survey equipment to arrive. After the arrival of the leke survey equipment, the rest of the time was speat on lake surveys.

Up to this tine very litthe was kom about the existing conditions In these lakes, and plantings of hish in most casea wrere uresses at the most. Although this survey is by no means complete, it does cive a ceneral Idea of the conditions existing in these lakes and problems comected With thom. Untll the time when a nore complete survey can be made, the stoolcing progam and recommendations piven in this report should be adequate tif carried out.

Persomel:
The survey party conststed of Thomas A. Taylors a praduate of Utah State Arrioultural College in willife, who wes in oherge of the survey work, and Morbert L. Siem, sentor in Tish and Came Management at Oreqon state Collere, assistent.

Iane Spent in the Rteld.
Between July 6 and Aucust 29 , approximately 40 days were spent in actull survey worl. The rest of the time, about 13 days, was spent on Pire suppression and presuppression. Gince these lakes could only be reched by trail. some time was lost packiag from one lake to another. The vork terminated abruptly August 28 , due to a call to the Big Cow Greek Pire.

Bquipment:

Whe survey equtpment was obtained by the Whitman Motional Forest from the U. S. Bureau of Disheries at Eniokto, Colthoris. The equap= ment boreowed consisted of an Eelnan dredge and messenger, plankton net and cup, water sample bottle, counting pan and skewe, and soundme cord.
 utensils were surn shed by the whtman Wationki Porest.

Gemeral Description of Ares:
A1 of these lakes ane located gt an elevation betreen 6800 to Booo feet and all vegetathon foumd around thom is alpine type. The matn
 fip predominating. Othem vegetation foum nes these lekes consisted of sedges, remumoulus, hesth, onions, and sandock Generalyy speaturs, the wegetritom surpounding these laces is sparge for the soit is very wocly and mummous olifes and rock slides extend to the werex"s edge. The

All of these Iakes are gocesbible only by tratis therefore, fishimg 1s comparstively Itght These lakes are looated in the Minan Division of the Whtmen Nathonal Porest, about fufty miles from the town of Baker.

The winters in this mepaon are quite severe ospecially at the elewation of these lakes. The minter season lasts six months or more and from three to encht peet of mow covers the ground. At sone of these Lates. show memeins the year around. It is readily sean that the quonme sescon for fish ts gomparetwely short in thas region.
bomontecgnents:
Whe wroter wishes to exprass his gratituae to Mr. Legtes lomoriet. Supervisax of the Whtman Wathonel Forest, Wr. H. Whitney, Gsyistant Gupervisom of the Whatman Hational Porest, Wr. Melyh Burke, Assistant Range Braminer of the Wiftmen Mational Porest. Wr. Glom Mitchell, Benior Rame Eraminax Por Reghon sux. and the Distriot Rangers por them interest, ssatstance and engesethong in this work.

Mhanss are due Mr. Traden Pillow, theh and Gane Mamgement student at Gregon State College, and Robert Bramment, Washington State Gollege, Por fish stomach anslygis: and Dr. Fanl R. Weodham, U. S. Bureau of Fisheries, for the identipteathon of bottom smples.

TABULATED LAKR SURVEY DATA

Physics Features:

All of the lakes gurpeyad ar located at an elevation tery near timberine Eegle Lake is the only one surveyed that did not heve any trees wurrounding the shoreline or on its watershed.

Four of the geven lakes gurveyed have been made into reservoirs for Arrigation water. Fhis has becr done by constructing a dan at the outilow of the lake Crator Lake and Upper Pine Lake were surgeyed during high water: Eagle and Locisingglass lakes during low whter The arrying capacity of a Iske for fish is determined by its low water level.

The mater replacement for lakes whe determined from the rolume of the Iake and the outrow Lower Pine Lake and the fastest water replacement of 15 days, wile Eagle Lake had the lowest replacenent or 436 days. Howerer. Eagle Lake has surface areage of 30 , while Lower Pine Lake has a surface aromge of only 2.8 .

The stream volume of the outlet was calculatod by the equation

$$
\begin{aligned}
& V=M \frac{W \cdot D_{0}}{T} \\
& \text { Y = Velocity (seconu feet) } \\
& \text { I } 5 \text { = Constant for bottom friction } 8 \\
& \text { W = Average width of secter } \\
& \text { D : Aterage depth of sector } \\
& \text { L = Length of sector } \\
& \text { TH mine (soconds) sequired for suriace flost to } \\
& \text { pass through the sector. }
\end{aligned}
$$

Suriace acres vere detarmined by triangulation.

	नid \% \%			$\begin{aligned} & 9 \\ & \stackrel{0}{8} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { q. } \\ & \stackrel{\sim}{\dot{\sim}} \end{aligned}$	\%	-
	$\begin{gathered} \sigma_{6}^{\prime} \\ \stackrel{8}{8} \end{gathered}$	$\begin{aligned} & 8 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & 68 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Fin } \\ & 6 \\ & 60 \end{aligned}$	$\begin{aligned} & m \\ & 8 \\ & 8 \\ & m \end{aligned}$	$\stackrel{\sim}{\bullet}$	¢
		$\begin{aligned} & \frac{a}{d} \\ & b_{0} \\ & a \\ & 0 \end{aligned}$	$\begin{aligned} & w \\ & 8 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \underline{0} \\ & =0 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	+	$\begin{aligned} & \frac{7}{6} \\ & \frac{m}{m} \end{aligned}$	eg 0 9	$\begin{aligned} & \overrightarrow{7} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{8}{\infty} \\ & \infty \end{aligned}$	$\begin{gathered} 8 \\ \stackrel{8}{0} \\ \stackrel{0}{0} \\ \underset{\sim}{\mathbf{o}} \end{gathered}$		$\begin{gathered} \underset{\sim}{\sim} \\ \stackrel{\alpha}{\alpha} \end{gathered}$	0 \sim \sim 0 0 0
$\left\lvert\, \begin{array}{r} 10 \\ \hline \end{array}\right.$	$$	$\stackrel{8}{8}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\stackrel{\square}{*}}$	¢	-	\%	\%
		in	\%	\%	示	m	लั	\%00
	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { ते } \end{aligned}$	$\stackrel{\square}{6}$	$\begin{aligned} & 0 \\ & 0 . \\ & \text { ®N } \end{aligned}$	or 0 0	$\begin{aligned} & \text { व్ } \\ & \text { N } \end{aligned}$	- 0 0	창
\%						0	0	0

ees heve artificial dams constructed at the outflow, making the lake a reservoix.
Scannivaid TVITSLEI

Lake	Color	Bottom Type	Type of Shoreline	Type of Watershed	Wature of Water
	Greenish due to alga.	Sand 10% Silt 20% Muck 60% Gravel \& Boulders 10%	Rooky 5\% Mesdow 50% Timbered 45%	Mountains Alpine fir	Phelting snow Springs
	Clear	Sand 20% Silt 10% Muck 60% Gravel \& Boulders 10%	Rooky 80\% Meadow 5\% Timbered 15%	Mountains Alpine fir Vegetation sparse	Meiting snow Springs
	Clear	Sand 5% Silt 40% Muck 50% Gravel \& Boulders 5%	Trmbered 30% Meadow 50% Rocky 20%	Mountains Mlpine fir Alpine meadows	Meiting snow Springs
	Clear	Sand 5% Silt 5% Muck 60% Gravel \& Boulders 30%	Meadow 5% Rooky 95\%	Mountains Trees absent Alpine vegetation	llelting snow Springs Stroam from sma lske
	Clear	Sand 5\% Silt 20% Muck 70% Gravel \& Boulders 5%	Timbered 25\% Meadow 75\%	Mountains Alpine fir sparse Alpine meadows	Melting snow Springs
	Clear	```Sand 10% silt 5% Muck 60% Gravel & Boulders 25%```	Timbered 40\% Meadow 20\% Rocky 40%	Alpine meadows Mountains Alpine fir Mito-barked pine	Melting snow Springs
per)	Clear	```Sand 5% 8ilt 10% Muck 75% Gravel & Boulders 10%```	Timbered 40% Rocky 10% Meadow 50\%	Mountains Alpine fir Alpine meadows	Melting snow Springs
wer)	Clear	Sand 20% Silt 20% Muck 45% Gravel \& Boulders 15%	Meadow 50% Rooky 50\%	Mountains Alpine fir Alpine moedows	Melting snow Springs

Mable 2

Looatron Elevation Accessibility Size

Wame of Lake	Location	Elevation	Accessibility	Size (Acres)
Bear	$\begin{array}{lll}\text { T } & \text { R } & \text { S } \\ 58 & 41 & 29 \\ \text { Union County }\end{array}$	7400	Trail - 5 miles	9.11
Crater	T R S 6 H H 12 Baker County	$7500{ }^{8}$		15.56
Culver	T R S 58 4.4 32 Inion	$7600{ }^{\text {\% }}$	Trail-4 mines	7.28
Curtiss	T R S 58 4 Union 35 Cownt	$8000{ }^{\text {² }}$	Trail 2 miles	2 (est.)
Eagle	 Union County	$7400{ }^{\circ}$	Trail-6 miles	30.19
Hidden	T W S 5 B We 9 Union County	7000^{\prime}	Trail-8 miles	18.72
Lookingcless		$7500{ }^{\text {\% }}$	Trail-5 miles	32.79
等oon	T R S $5 S$ $4 E$ 9 Union County	7000^{8}	Trail-83 ${ }^{\text {a miles }}$	4 (est.)
Sine (Lower)	T R S $6 s$ $45 E$ 19 Baker County	7500:	Trail-2 ${ }^{\text {a }}$ miles	2.80
Pine (Upper:)	$\begin{aligned} & \mathrm{T} \\ & 6 \mathrm{R} \text { 45 } 18.19 \\ & \text { Beker County } \\ & \hline \end{aligned}$	$7500{ }^{\text {\% }}$	Trail-21 miles	17.88
Two Color	T R 8 $6 S$ UI 8 Baker County	$6800{ }^{\circ}$	Trail-5 miles	3 (est.)

Chemser Analysis:

Chemical analysis consisted of the determination of ${ }^{H}$ oxygen cone tent, and methyl orange alajinity ssuples of water to be anaymed were taken at the surfece of the lake. No samples were taken belcw the surfece.

All the lakes oxcopty Culver Lake, were founc to be slightly acic with range of 6.5 to 5.5 p . Culver Lake was slightiv on the alraline
 these figures are open to question.

Oxygen, carbon dioxide, and methyl orange alkalinity were measured in parts per milison Crater. CumFer and Hidden lakes all had an oxygen content of 5 ppm. While this oxygen content is low it is not too low for fish ife unless the earbon dioxide content is extremely high. Culver Loke was the only lake that had \& low oxygen snd a high carbon dioxide conteat, but apparently it was not affecting the fish life.

The methyl orange alkalinity test represents the anount of calcium carbonate in parts per milim. Carbonetes are necessary for fish Ifeand the production of fish food organisms. Tests showed that the lakes that were tected are fairly well supplied.

Chemical Ansysis of Leke Waters
Name of Lakes

Chemical Tests	$\begin{aligned} & \text { Crater } \\ & (7-21 \operatorname{lom} 39) \\ & \hline \end{aligned}$	Pine Lakes Heservoir $(7-26-39)$	$\begin{aligned} & \text { Looking } \\ & \text { glass } \\ & (8-3-39) \end{aligned}$	$\begin{gathered} \text { Cuiver } \\ (8-17-39) \end{gathered}$	$\begin{gathered} \text { Bear } \\ (8-18-39) \end{gathered}$	$\begin{gathered} \text { Eagle } \\ (8-25-39) \end{gathered}$	Hidcen $\mid(7-17-39)$
Temperature*	$59^{\circ} \mathrm{F}$	59°	$60^{\circ} \mathrm{F}$	$64^{\circ} \mathrm{F}$	$66^{\circ} \mathrm{F}$	$63^{\circ} \mathrm{F}$	56°
p^{H}	6.0	5.5	6.0	8.0	6.0	6.5	6.0
Oxyen	5.0 ppm	7.5 ppas	7.5 ppra	5.0 ppm	7.5 pma	7.5 ppm	5.0 ppas
Carbon Dioxide	3.5 ppar	5.0 prom	7.5 ppri	12.0 ppm	4.0 ppm	4.0 ppm	2.0 ppm
Methyl Orange	\cdots	-	7.0 pprs	8.0 ppm	12.0 pmm	8.0 ppm	-

* Temperatures mere taken at the surfaco.

Since most of these lakes are ebout the same elevation and are all looated close together, the water termperatures are about the same. The high est surface temperature was found at Culver Lake with a temperature of $64^{\circ} \mathrm{F}$ and the lowest suriace temperature at Hidden Lake, which was 56°. The tomperam tures of these lakes probably do not increase much more than the temperatures recorded in Table 4 , for this survey was conducted in the middle of the summer. Tndoubtediy, the temperatures are mach colder during winter months for ice and snow completely cover the lakes. Snow banks were found along the edge of some of these 1akes as lats as August 12.

Bear and Hidden Lakes, 10 and 12 feet doep respectively, did not have a thermocline. (A drop of $2^{\circ} \mathrm{C}$ per meter was considered a thermocline). Culver Lake had the most pronounced thermocline. The water temperature dropped from $64^{\circ} \mathrm{F}$ at the surface to $41^{\circ} \mathrm{F}$, the 20 foot depth. Phis sudder drop was undoubtediy caused by the snow water ruming into the lake.

TWo groups of ish stomachs were sent away for analysis. fish stomachs from Lookingglasw jake, Pine Lake and Resmryoir, Hidden Lake, and Crater Lake were sent to lashington State College and were identified by Robert Braumwant The other group of stomachs rrom Bear Lake, Culver Lake. Tagle Lake, and Bagle Creek were identified by Braden Pillow, graduate studeat in Fish and Gane Management, Oregon State College The findings of each of these students mre incorporated in this report Although these two stomach anysis reparts difrered somemat in 10 m , they both gave the necessary data. Fish stomehs from Crater Lake were apparently lost.

Lookinggiasa Lake:

It whe found thet there were about trenty obvious grouping that the materiel from this lake semed to rall into. Of the portymix stomachs from Lookingglass Lake, twentyminee, or 50% ware founc to be empty The wantert of the others Feried fron 1 co to 1.3 ce. mking an averege total content for this group o2l ece The most common organism found here wess moscuito larvae These lervae were found in about onemourth the stonachs. About one-fifth had some snall spores which could not be identified. They were probably from some aquatio moss or alges. coleopterg were next mith eighteen percent occurrence. These beetles. though not identified more closely than order, were apparently divicled about $50-50$ betmeen aquatic and terrestrial forms. The Hempterous insects noted in the stomachs from Lookingglass Lake, ss well ss the other lakes, were almost entirely aquetic ones of the geners Corixa and Notonecta.

Fable 50
Oocurrence of Fish Food Organisms in Stomens of Fish from Lookingglass Lake Ferty-Six Stomachs

Food Organisme	Occurrence in Stomachs	Percent of Docurrence
Mosquito Iaryee	11	24
Coleoptera adult	8	18
Spores	8	18
Hemiptera	7	13
Wood	7	13
Cadis fly Inxeme	5	11
duts	5	11
Other Hymenopters	5	11
Comifor needies	4	9
Ticks	3	7
Dansel fly	3	7
Spiders	3	7
Chironorous larvae	3	7
Orthoptere	2	4
Diptera	2	4
Simulium	2	4
Hosquito adult	1	2
Rocks	1	2
Coleoptere larvae	1	2

Pine Lake and Reservoir:

Fifteen stomacha were analysed from these two bodies of water. Stomachs were not kept separate prom Pine Lake and the Reservoir because the two bodies of water are so close together and are comected by a mall strean. The stomechs contained next to the highest verage volume-o 95 co. Coleoptera were the most plemtiful in regrad to the frequenoy of occurrence for they were found in fortynsever pereent of the stomachs. Forty percent contained Hemptere and thirty-three percent contained adult mosquitoes. The remainder was divided almost equaly among Chirononous larve, ants. other Hymenoptera and Orthoptere.

It is significant to note the total absence of wood, rocks, conifer needies, or other foreign bodies in the stomechs of the fish prom these lakes.

Table7.
Oocurrence of Fish Food Orgenisms in Stomachs of Fish from Pine Leke E Regervoix Fiftaen Stomachs

Food Organisin	Occurrexce in Stomachs	Percent of Occurrence
Coleoptera	7	47
Hemptera	6	40
Mosçito aduit	5	33
Chironomous larvae	4	26
Ants	4	26
Other Hymenoptera	4	26
Orthoptera	3	20
Canned Corn	2	13
Diptera	1	7
Spiders	1	7

Hidden Lake:

The thirty stomachs from Hidden Lake showed an average volumetric content of . 62 sc. As in the case of the analysis of the Pine Lake group, the stonachs from Hidden Lake show the predominance of Coleoptera. This order laads with 37% occurrence, followed by caddis fly larvae and Simulium larve with 23% and 20\% respectively. This figure is probably not very representative in the ease of the eadis fly larma as the cases were in cluded with the larvae.

Table 9.

Food Organsma	Occurrence in Stomehs	Percent of Ocourrence
Coleoptera	21	37
Caddis fly larvae	7	23
Simulium lasve	6	20
Ants	3	10
Leech	3	10
Conifer noedles	3	10
Eemiptera	2	7
Damsel fly	2	7
Rocks	2	7
Mosquito larvae	1	3
Simulium adult	1	3
Spider	1	3
Hymenoptera	1	3
Wood	1	3
Oxthoptere	1	3
Mayfly	1	3
Odonata sdult	2	3

							$\begin{aligned} & 8 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$					\%	硅	8 \% 4 4 4 8 8 8		\%	E	\%	
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$	1	1	$\begin{array}{\|c\|} 150 \\ 200 \\ 15 \\ 175 \\ 1 \\ \\ 20 \end{array}$	1	$\begin{aligned} & 5 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1	2		1 2 1 1 4 2 1 12 9 2	$\frac{4}{3}$	1	2	3	2	1	2	1 5	1	$\begin{aligned} & 1.200 \\ & 1.8 \\ & 4 \\ & 2.3 \\ & .2 \\ & .2 \\ & 2.0 \\ & .2 \\ & .1 \\ & 1.0 \\ & 1.0 \\ & 1.5 \\ & 1.5 \\ & .4 \\ & 1.0 \\ & 1.1 \\ & .3 \\ & .1 \\ & .8 \\ & .2 \\ & .15 \\ & .3 \\ & .3 \\ & .1 \\ & .15 \\ & .1 \\ & .2 \\ & 1.4 \end{aligned}$

The fourtean stonachs examined from Bear Lake contained an average Tolume of 91 ©c. A predominance of singed, terrestrial insects vas being fed upon. Although the percentage of ocourrence for the order Hymenoptera was 72% as compared with 93% for mage larvae (Diptare), the Hyenoptera formed the bulk of the food. Tresh was present in 64% of the stomehs and Iemipters 35\%

Mable Il.

Occureme of Fish Food Organisms in Stomachs of pish from Bear Laks Fourten Storach Examined

Food Organisme	Occurrence in Stomache	Tumber of Insects	Volume in coss
Spittle bugs (Homoptese)	2	3	.23
Beetles (Coleoptara)	3	5	. 20
Adult Plse (Diptara)	2	3	.25
Mige lesvae (Diptora)	13	672	1.72
Ants \% Wasps (Hymenoptera)	10	300	7.28
閣eterbugs (Hemiptera)	5	7	. 27
Dragon plies (Odonotr)	3	4	2.01
Caddis flies (Mrichoptera)	2	30	.14
Snake flies (Neuroptares)	2	2	.28
Harchfly larvee (Diptera)	4	31	.93
Gras shopper parts (Orthoptere)	1		. 04
Coms (Mollusce)	2	2	. 10
Trash	9		. 53
Vegetstion	1		. 03

CuIter Lake:
The geries of ten stomachs examined from this lake showed an average volume of 31 ce. Time did not permit the anklysis of any more than ten stomehs.

This lake also shows a preponderance of winged, terrestrial insects. The ants and wasps showed up the heaviest with terrestrial beetles second. The percentage of occurrence of materisl found in stomachs is as follows: Hymenoptera 100%, Coleopterg 100%, trash 90% Homoptere 80%, Hemiptera 70%. A small mollusca contributed heavily to the diet of two fish from this leke

Table 12.

Occurrence of Fish Food Organisms in Stomachs of Fish from Culver Lake Sen Stomachs Bramined

Food Orgemisms	Oecurrence in Stomachs	$\left\lvert\, \begin{gathered} \text { Humber of } \\ \text { Insects } \end{gathered}\right.$	Tolume in co's
Spittle buga (Homoptera)	8	47	. 62
Beetlss (Coleoptera)	10	80	. 92
Adult flies (Diptera)	4	16	. 45
Midge larvae (Diptera)	4	33	. 09
Ants \& Whasps (Hymenoptera)	10	210	4.65
Water bugs (Hemiptera)	7	30	. 21
Maydies (Ephemerica)	1	3	.02
Mayfily Mymphs (Ephemerida)	1	1	.09
Clams (Mollusca)	2	14	. 51
Ticks (Arachnida)	1	1	. 01
Grasshopper parts	1		. 02
Trash	9		.53

-16 -

Tagle Leke:
The average volume of the stomach content of fish from this lake was 3.17 co. Of this. 2.91 ce consisted of ants and wasps and formed the buils of the diet at the time the fish were taken. Spittle bugs were eaten to some exteat and midge larvas were high in numberss but formed a small part of the bulk. The percentege of occurrence for Homoptera was 100%. Hymenoptera 100%, Goleoptera 80%. Hemiptera 80%, Diptera (nidga larvad) 60%, trash 50%

Table 13.

Oceurrence of Fish Food Organisms in Btomachs of Fish from Eagle Lake

Food Organisma	Occurrence in Stomachs	Number $9 \mathscr{L}^{\circ}$ Insects	Volume in co's
Spittle bugs (Homoptere)	10	107	1.00
Beetles (Coleoptera)	8	22	. 46
Ants \& Wasps (Hymenoptera)	10	869	29.16
Water bugs (Hemiptera)	8	19	. 19
Mdge larpae (Diptera)	6	166	. 25
Alder fly (Neuroptera)	1	1	.01
Grasshoppers (Orthoptera)	1	1	. 03
Grasshopper parts (Orthoptera)	1		. 32
Leathopper (Homoptera)	1	1	. 01
Trout egss*	1	1	.02
Trash	5		. 17
Vegetation	1		. 11
* This might possibly be a feed	egg or small bait eget		

Bottom Food Samples:

Botton 1000 semples mere taken with an Ecknan dredge, which takes onemourth gquare foot smples of the lake bottom in one dredging three to four dredgings were taken in each inke. Although this number of dredgings is entirely toc small to show the true rood value of a lake it gives general ides of the kind of organisms present on the lake bottom spparently most of the bottom smples were lost or were not idontified for notes a only one semple from each lake could be found. In determining the food grade for a lake, condition of the fish, stomach analysis, and botton samples mere taken into consideration These data me given in the following table.

Tmble Lis

Bottom Food Samples

Food	Crater	Pine Lakes \& Reservoir	Eidcen	$\begin{aligned} & \text { Looking } \\ & \text { glass } \end{aligned}$	Bear	Culver
Bphemeride (Mayilies)						3 N
Diptera (Plies)	$\begin{aligned} & 8 \mathrm{~L}_{0} \\ & 1 \mathrm{P} . \end{aligned}$	12 L 。		2 L		3 L
$\begin{aligned} & \text { Coleoptera } \\ & \text { (Beetles) } \end{aligned}$	$1{ }^{1}$			2 A.		
Trichoptera (Cadals flies)		42.				
Clams	14		24	25	19	
Earth worms		5	1	3		
Totel	24	21	25	32	12	
Food Grade	Poor	Poor	Fair	Poor	Good	Poos

L. Lerigae

$P=1$ ups
A. = Adult

N : Mymph

In determining the zumber of fish to be planted in each lake, the following itoms were taken into consideration: (1) pood gredes (2) spaming areas, (3) degree fished, and (4) agres of lake surface Planting tables compiled by H. S. Davis in his pamhlet "Instructions for Conducting Stream and Lake Suryeys" were used to determine the number of fish to be planted.

Eastern brook trout were recomended to be planted in all lakes because this trout is adepted to cooler waters than the rainbow. In addie tion, the eastern brook trout is a fall spewner wile the ainbow spaws ir the spring. By spawaing in the fall, the eastern brook fry hatch in the only spring and are able to take advantage of the entire growing season through the summers wheress the rainbow probably does not hatch till oarly sumer and consequently is not as far adyanced whom winter sets in. By not being as iar advanced as the esstorr brook fingering, the rainbow fingerling probably has a greator winter kill. Although few rainbow trout were taken from sone of these lakes, the main species of fish present dis the astern brook trout.

Anmul plentings were secomended where spawing areas were generally scmeo. Hidden Leke and Pine Lake and Reservoir were the only lakes of this group that apparently had good spawaing areas. Hidden Lake is closed to angling and the netural spawn will keep the lake stocked as long as the seeson remains closed. but Pine Lake and Reservoir will have to be stocked with equfish each yeas to meet the fishing load.

Fingerlings at least three inches long should be planted these lakese The reasons for this are: (1) three inch fish or longer will be able to mithstand the severe winter better than smaller fish. (2) since these lakes have large fish in them, three inch fish or longer wil be more able to escepe from the large fish and (3) thres inch fingerling will be more able to withstand the chang Prom hatchery weter to lake water.

Al plantings should be done as early in the sumer as possible to allow the fish to become adjusted to their new environment before winter.

The followning stocking progran should be considered as temporary for at probably wil be atered from time to time as more information is gathered about these lakes.

SUMMARY AND RECOMENDBTIONS

Bear Lake:

Beor Lake is apparently the most productive of the lakes surweyed and can produce as meny or more fish than some of the larger lakes if lept properly stocked. This lake is stocked with both eastern brook and rainbow trout, and the fish that were taken were in excellent condition. The growing season is somewhat longer than that of Culver Lake because of the earlier breakup of snow and ioe.

Any mechanical improvement is impractical on Bear Lake, due to the cost of such improvement for the returas that could be expected. This lake is lightly isished and if kept properly stocked will mford axoellent fishing.

Curtiss Lake:

Only general observations were made on Curtiss Lake.
Curtiss Lake is located above timberline at an elowation of 8000 feet. Practically no Fegetation was found in or mear the lake, and large snow banks were still on the edge of the late on July 19, 1939. These snow banks probsbly rematn here the year around. This lake depends on snow and possibly underground springs for its supply of water: this probably keeps the temperature of the weter too low for fish growth. Curtiss Loke has an area of ebout two acres and is estimated to be about 30 feet deep.

As far as known, fish have never been planted in this lake. The lake is accessible only on foot, over rough and hamardous terrain. It is recoramonded thet fish should not be planted in Curtiss Lake becquse:
(1) The lake is inaccessible
(2) The water is too cold
(3) There is very little food
(4) There are no spawning areas
(5) The growing season is too short

Culver Lake:

Culver lake is surrounded by a slide formetion and a small fringe of moadows becked by grante oliffs. There is practically no timber present for only a few alpine fir grow along the lower edge of the lake.

The growing season in this lake is extremely short for the lake is partially covered with snow until July or later. A small lake just above Culver Lake was filled with snow and ice and was furnishing most of the water for Culver Lake. The water coming from this small lake hed a temperature of $36^{\circ} \mathrm{F}$. Undoubtedly, this cold water running into Culver Lake causes the prominent thermoline here. (Table 4.) This lake is probably filling in rather fiast for a rock slide fomation surrounds about one-fourth of the lake;
also, several trees were uparooted from snow slides.
Culver Lake is stocked with eastern brook trout and the fish that were caught were in fair condition. Bocause of the short growing season at least 3^{14} fish should be planted here. Any mechanical imromement on this lake would be impratical.

Crater Lake:

Crater Lake is a volcanc, orater-1ike depression located at an alevation of 7800 feat. The surroundine timber type is wery sparse alpine fir fith only \& few small scrubby trees mear the lake. The soil surrounding the lake is oí granitic texture and about 75% of the lake bottom is of the same composition This type of botton is uaproductive for aquatic plant life supporting fish food organisms. A dam has been constructed over the natural outlet going down Cliff Creek and the water now goes through a tumel at the opposite end of the lake and down Kettle Creek where it is used for irrigation purposes. The wher level fluctuates approximately 7 feet. This lake has no iniet and all of the water comes from melting snow and underground springs.

Fish taken from this lake were in fair condition. Fingerling were mumerous but fry were entirely absent. This fact can be accounted for in that no natural gpaming takes place inthis lake and the fingerings present were planted the year before--1938. A few fish between 14 ind 16° were taken, but this size is not very abundant. The only specie caught from this lake was eastern brook. Like the rest of the lakes that were surveyed, this lake has a short growing season; however, the water whims up considersbly during ridsumar.

Under the presont conditions, no improvements can be inaugurated for Crater lake except through the stocking program. (Table 15). Stabilizing the water leval of Crater lake would improve the fish production: however, at the present tiae the fishing demand is not hoavy enough to stop the benefits derived from using the water for irrigation.

Two lakes called Little Kettle Lakes are located just below Crater Lake. These lakes cover about one aere each and are not over 3 feet deep. They are obviously, not suited for fish production.

Eagle Lake:

Although Bagls Lake does not have an elevation as high as some of the lakes surveyed, it is located above timberline and is surrounded by sloping rock wails, with practically no vegetation. Snow and ice remain on the lake often until July, making the growing season very short. The lake is stocked with eestern brook trout which were in fair condition at the time of this survey. Stomachs examined from fish of this lake contained an average volume of 3.17 cc . of food which was over three times the average volune for the rest of the lakes surveyed. However, of this mount 2.91 ca. consisted of ants and wasps which were only temporary terrestrial food. (Table 13.) The rest of the ten food items taken comprised only 26 ce.

In addition, half of the stomehs examined aontained tresh which tends to show that food might be scarce when terrestrial forms are not available. As this survey was interrupted by a call to a fire, bottom somples were not taken. Eowever, judging from the condition of the fish, the quality of the food found in the stomechs, and the environnent, the amount of pish foods present seemed to be 10w.

Since this lake has such a short growing season, is a reserroir, and is accessible only by six miles of trail, ony mechanical improvements would be impractical. Threerinch eastern brook fingerlings should be planted anually in this laks. (Table 15.)

Esacen Lake:

At the time of this survey, Hidden Lake was closed to angling.
Hidden Lake is a shallow lake with maximum depth of 14 feet and an average depth of 6.9 feet. Approximately 75% of the shoreline is meadows and 25% alpine fix timber, while the surrounding peake are made up of granite. The soil around the lake and approximately 90% of the lake bottom are of granitic composition The lake is supplied with water fron melting snow, undere ground speings, and a small lake above the main lake.

The small strean feeding Hidden Leke contains good spanning areas. as does the small lake at the head of the stream. Both the small stream and lake had many fry and fingerlings in theme The matural span will maintain sufficient rumbers of fish in this lake as lone as it is closed to angling. Whon this lake is opened to angling, approximetely 300 three inoh fingerling should be planted annually.

At the present time, mechanical improvements onthis lake are not ado visable. If the utilization of this lake bocomes heavy enough, a small dam can be constructed at the outiet and the lake raised 3 to 4 feet, thus in= areasing its size and productivity.

Lookincglass Lake:

Lookingglass Lake was the longest lake surveyed with a total of 32 acres. The tegetation around the lake is a very sparse alpine fir and whitem barked pine type. Some high mountain meadows border the water's edge. High granite peaks aurround the lake and extend to the water"s edge as slides. The soil surrounding the lake is of granitic makeup and composes about 40% of the lake bottom.

Stoman content of fish taken from Lookingglass Lake was the lowest of all the lakes surveyed. Of the forty=six stomachs exmined, fifty per cent of them contained no food. Also, the bottom food content of this lake seemed to be low. However, in spite of the low stomach contant and low bottom food connt, these fish were in good condition. (Conditioning factors were not taken of any of the fish, but the condition of fish was judged from experience). The good condition of the fish would indicate that the fish had been taking ample wounts of food.
(2) few eas that seemed suitable for spaning were noted in the shallaviweter along the edge of the lake. However. since this lake is a reservoir. these areas might be exposed during the spaming season of eastam brook tront in the fell. A fev fry were sean here, indicating thet some natural spaming takes place. but the natural spam in Lookingelass Lake is probebly small.

The greatest improwement that could be made on Lookingsiass Lake would be to stabiliw the water level. but under the present utilizetion progran this is hardly fugtiflable. A more thorough investigation of the food conm tent of this lake should be undertaken and a stoking progran set up according to the results found.

Pine Leke and Reservois:

Originally two notural lakes were located heres a large lake of about 17 acres. and small lake of about 3 acres located below the large lake. A dyke has besn constructed aross the outlet of the large lake the Iake made into a rescruir end tho water used for irgigathon All water flowing out of the large Inke or reservoix flows into the smal lake belom it. Two gtreams flow into the reservoir. One of these streams originates in a high meadow above the qesergoir and the other from small shallow lake above the reservoir These streams do not serve as speming grounds but only as a souree of whter supply. The lake is surrounded by grante peaks. Consiapre able soll and sediment are in the lake and sereral swall meadows are along the odges.

Apparently the naturel spwur in these two bodies of water is good because considerable numbers of 1 ry and fingerings were seen fish taken from these lakes were in exeeptionally good conditione stomach analysis showed that the fish mere taking an abundance of food but the botton food content was apparontly love

Although this lake is only accessible by about three miles of trail. it appears to be used quite extensively by fishernen. It is probebly fished in medum amounte in that approximately 40% of the legal sized fish are renoved anmuelly.

The small lake could be improved by the construction of a dam across the outiet to paise the water level, and the reservoir by stabiliging the water level. but under the present utilization of these lakes this wonld not be fustified. A revised stocking program and a more complete study of the Pood present fin the lakes are the only feasinle improwencnts the present tine.

Moon Lake:
Only general observations were made on this lake as a regular survey was not made.

This lake corers approximbely 4 acros and is not over 6 feet deep. The greater part of the bottom of this lake ia of grantio makeup, although there are some sedinentary soil deposits The timber type is sparse alpine fir Some sedge meadow borders the lake and some grasses grow in the shallow water along the edge.

The lerel of the lake could be raised 6 or 7 feet by construetiag a dam at the outlet. To raise the weter this much, the dam would have to be about 40 feet long If the depth of this lake could be increased to 12 or IL feet oastern brook wrout would be obie to survive in this lake Possibiy eastern brook trout could survity st the preseat tine. This could be detero mined by planting approriwtely 200 theeonich fingerlings in this lake as an oxperiment. If thas is done, the lake should be olosed to amgling and a followmp mele the next year.

These will probebly nevar be any naturel spawning in Moon Lakb because of the lack of inflowing strears and gravel bars within the leke.

TH0 Golot Lake:
Sinee Two Color Lake is too small and too shallow a reguar survey whe not conducted here.

This lake is loceted mit an elewhtion of 6800 feet in lodgepole and alpine fir timber bype and occupies an mres of appreximately 3 acrese Since thi 1 lake hes depth of to 4 feet, heavy winter snows and joe would maike it valueless as mish producing lake An abundance of sedges and grass surroumcs the lake and the entire bottom is muck and decomposing organie motter.

No feasible juprovement is possible for the production of pish in Two Color Lake and under presert conditions fish should not oo pinted here.

$$
\frac{\text { GAGLE CREEK SURVEY }}{(\text { July } 7-11.1939)}
$$

Berore starting the lake survey on the Mhitman National Forest. a strean survey wes conducted on Bagle Creck and general observations were made on East Ergle Creak which empties into Eagle Creek. Athough the strean survey oquipmentw as limited, the data that were gathered cen be used to sone advantage in the future menagement of this strean.

This survey wes made from the Hain Eagle bridge just below the nouth of Eest Tegle to Pumale Cresk, a distance of about 10 miles.

Watershed:

The watershed of Eagle Creak consists mainiy of rugged mountains. The chief vegetation on the wetershed is ponderose pine. red fir, white fit. and buck brash (Cemnothus).

Barsiexs:
None presont.
Diversions:
Mone present.

Springe

Quite an obundance of springs was noted along this section of Eagle Creek but none of them had enough volume for rearing pools.

Gsediest:
In some places the stream appromahes torrential nature while in other plaees a succession of pools and riffles is found This section of the stream can be classed as heving rather fast water.

Pools and Shelter:

Pools and sheltar are rather scaree from the mouth of East Eagle to the mouth of Peddy Creak. (See map). Most of this section is deep rifiles with abundant sheltering boulders. Below Paddy Creek large deep pools are sbundant.

Bottom:

The bottom of this stream is practically all rock makeup. The follonm ing figures give the percentage of each kind of rock: boulders 30% rubule axd gravel 45% and sand 25%

Shede:

Although the banks of this stream are well vegetated shade is

Aqustic Vegetation:
Aquatic vegetation as negilgible.
Eneraies:
Enemies are scerce and unimportant.
Speming Areas:
Spawning gravel is abundant throughout the section surveyed.
Tish:
Rainbow trout is the most abundant fish of this stream but a few eastern brook and dolly varden trout were present. It was reported that sairion migrate up this stream in August However, no salmon fyy or fingerIngs were taken.

Fry mere munerous in the quiet waters and shallow pools. Fingerings were not as abundant as fry.

Aceessibility:
About half the length of this strean is accossible by ronds and the rest by trails.

Rearing Pool Sites:
Wo favoreble xearing pool sites were found.
Square Eoot Bottom Samples:
A regular square foot strean sampler was not available so a homemade one mas used. Six samples were taken of this section of the river but identification was completed on only three. (Thble 16). Unfortunately the weight was not taken of these samples, but from the number of orgenjam per square foot Dagle Creak seems to have a good food grade.

Table 16.

Square Foot Bottom Samples - Fagle Creek

Sample No.	Location	Insects					Total
		Trichoptars	Sphemerida	Diptere	Plecoptera	Coleoptera	
1	Bridge	14.	13 N	7 L	2 N	18.	37
2	$\begin{aligned} & \text { 2 mile bef } \\ & \text { low bridge } \end{aligned}$	$\begin{gathered} 11 \\ 1 \\ \hline 1 \\ \hline \end{gathered}$	12 N	7 L			31
3	$\begin{aligned} & \text { bumis } \\ & \text { below } \\ & \text { bridge } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 P \\ & 14 \end{aligned}$	8 M	11.	5 \%.	1 A.	35

L. Larvae

P : Pupa
(17 Wymph
$\mathrm{A}=\mathrm{Adult}$

Fish Stomach Analysis:

The average volumetric conteat of ten fish stomehstaken from Eagle Creek was 2 ce. Hay fly nymphs (Dphomerica), ants and wasps (Hymenoptera). and caddis fly larvae Trichoptera oocurred in 100% of the stomechs. Aquatic fly larvae (Diptera) 30% stonefly adults (Plecoptern) 50%, dult beetles (coleoptere) 40% and damsel flies (Odonata) 40\%

According to volume, mayriy nymphs composed 65% of the food taken. Caddis fly larrae came next, by composing 10% of the food taken. Apparently the fish had an abundanee of food during this season of the year.

Tible 17.

Occurrence of Fish Food organism in Stonachs of Fish from Beglo Creek
Ten Stomechs

Fcod Organisum	Oeguryence in stomachs	$\begin{aligned} & \text { Tumber of } \\ & \text { Insects } \end{aligned}$	Volume in cels.
Peyfiy aymphs (Ephomerida)	10	200	12.89
Ants \% Wasps (Hymenoptere)	10	43	1.67
Caddis ily larvae (Trichoptore)	10	142	2.18
Caddis fly muit (richoptera)	1	1	.16
Aquetic fly larvee (Diptera)	6	15	.27
Terrestrial fly lerves (Diptera)	5	23	2.01
Adult flies (Diptera)	5	22	1.21
Stonefly adult (Plecoptera)	5	6	.63
Stonefly nymph (Plocoptare)	3	3	.19
Adult beetles (Comeoptern)	4	5	. 11
Weter buge (Hemptera)	3	7	. 14
Guasshopper parus (Orthoptere)	1		-33
Whole Grasshoppers (Orthoptera)	1	1	. 18
Spiders (Arachnide)	2	2	. 11
Dansel fites (Odoneta)	4	4	.10
Trash	2		. 10

Volume:
The volume of water that flows in Bagie creek whs determined by the equation.

$$
\begin{aligned}
& R=\frac{\mathrm{R}_{\mathrm{I}} \mathrm{I} . \mathrm{L}_{0}}{T} \\
& \text { K = Constant for bottom friction }=.8 \\
& \text { W = Averege width of stream sector } 55^{\circ} \\
& D=\text { Ayergge depth }=1-1 / 6 \text { : } \\
& \text { L weagth of sector }=200 \text { : } \\
& \text { I }{ }^{(10 n e} \text { (in seconds) required for surfroe float } \\
& \text { to pess through the sector } 20 \text { seconds. } \\
& \text { I }=8 \frac{55 \text { x } 1-1 / 6 \times 100}{20}-251.6 \text { second leet } \\
& 251.6 \text { sec. ft } 120,780 \text { gallon per minuto }
\end{aligned}
$$

Degree Fishod:

Eagle creek is fished heavily in that about 70% of the legal sized fish are taken mnually.

Improvements:

The soction of Lagle Creel between the mouth of gast Eagle Creek and Martin's bridge does not have enough cover. As stated before, this section of the strean is manny ciffles mith very few pools or other types of cover. Different types of \log and rock improvements could be asily made along this section because a road follows mlong the stream bank and plenty of rocks and loge are svailable. This section of Eagle Creek is reported as the poorest fishing section of this stream. Improvements on the rest of the strean are not necessary at present.

Stockiag Program:

In determining the stocking program for Eagle Creek, the following itens were taken into consideration: (1) average width of streand (2) food grade, (3) straem conditions, (4) the number of miles to be stooked, and (5) degres fished. (Table 18.)

Up to this time very few fish have boen planted below the mouth of East Eagle Creek because it was thought thet this saction of the stream becane too warm in the sumer for fish. This survey was conducted from July 7 to 11. and during this time the highest tempereture recorded was $64 \%^{\circ}$ findoubtedy, the temperature of this atream rasios higher than this during the hot days of August, but it is doubtrul if it raises higher than $83^{\circ} \mathrm{F}$, the maxinum temperature rainbow trout are able to withstand. If the temperature of this ztrean did appromeh this maximum temperature during the day, the stream cools down from 10° to 12° F during the night and does not remain at this high temperature more than 4 or 5 hours.

Table 18.
Stocking Program for Escyis Creek *

	Number of Pish peromile	Sime of Fish	Length of Section	Total
Wouth of E. Eagle Creek to Martin's Bridge	2000	$3^{\prime \prime}$	3 miles	6000
Martin's Bridge to Forest Boundary	1200	$3^{\prime \prime}$	8	9600
Mouth of E. Eagle Creek to Mouth of W. Eagle Creek	1800	$3^{8!}$	6 "19	10800
Mouth of W. Eagle Creek to Two Color G. $S_{\text {. }}$	1300	$3^{\prime \prime}$	3	3900
Two Color G. S. to Lookingo glass	400	3^{18}	5	2000

Total number of fish to be planted annally
32.300

* This strean should be stocked only with rainbow trout.

Only general observations were nade on East Eagle Creek. This areek very closely resembes Eagle Creek. The strean is ciear, cold, and fest, and apparently has an abundance of food. It is a typical rainbow strean and other species should not be introduced. Spawning areas are numerous, but the natural spam canot carry the present fishing load.

Approximately 800 three-inch rainbow fingerlings per mile should be planted amually from the mouth of East Eagle to the end of the road. a distance of 6 miles. k bove the end of the road approximately 500 three-inch fingerlinge per mile should be planted anually for a distance of three miles, biemially above this point.

REFRRENGES USED

Leach Gien C. ∞ 1939. "Artificiai Propagation of Brook Trout and Rainbow Trout, wh Notes on Thre Other Spectes". U. S. Bureau of Fisheries Document Ho. 955.

Davis. He_{E} s. $=$ 1938. "Instructions for Conducting Strean and Lake Surveys". U. S. Bureau Fisheries Circular No. 26.

Needham, Paul $\mathrm{R}_{\mathrm{o}}=\mathbf{-}$ 1936. "Trout Streams".
Welch, Feul S. - -1935 . "Limology".

Scale $1^{\prime \prime}=\frac{\text { LEGEND }}{200^{\prime}}$
 9.11 Acres
 $=\infty=$ Vegetative
 Boundaries
 \square Carex-Juncus
 \square Open Water

LEGEND
Scale $1^{\prime \prime}=200$ 9.11 Acres Contour Intervals $=4^{\prime}$ Sand Deposit Silt Deposit Muck Gravel-Boulders $-=-$ Bottom Cont. Bidryg

Scale $1^{\prime \prime}=\overleftarrow{\text { LEGEND }}$
32.79 Acres
e-s Piped Outlet
Contour Intervals $=4^{\prime}$
Sand Deposit
Silt Deposit
Muck
Gravel - Boulders
$-=-$ Bottom Cont. Boundary

LOOKINGGLASS LAKE

$\text { Scale } 1^{\text {LEGGEND }}=400^{\prime}$
32.79 Acres
o...) Piped Outlet
-- Vegetative
Boundaries
\square Carex-Juncus
\square Open Water

CRATER LAKE

Scale	$1^{11}=200^{\text {LEGEND }}$
15.56	Acres
-0.0.	Piped Outlet
	Vegetative Boundaries
\square	Carex-Juncus
\square	Open Water

30.19 Acres
-..--s Piped Outlet
-- Vegetative
Boundaries
\square Carex-Juncus
\square Open Water

C UIVER I AKE

$C U L V E R \quad \perp A K E$

